Extended outline written for the April 17, 1967 presentation by Jason Morgan of his paper in the "Sea Floor Spreading" session of the American Geophysical Union Meeting in Washington, D.C., U.S.A.

W. Jason Morgan
Geology Department, Princeton University Princeton, New Jersey

Abstract

Conaider the earth's surface to be made of a number of rigid cruetal blocks, and each block is bounded by rises (wherf new turite is formed), trenches ar folding mountains (wherc surince is being destroyed), and great fauits. Assume that there is no wemerne folding, or any aistorcion w-thin 2 siven block. Then on a opherical surface, the motion of 0.ce slock (over tine mantle) relative to another siock may be described by a rotation of on relativa to the other. This requires three parameters, two to locite the pale Qf relutive rotation anc one for the magnitude of the angwiax velonkty. If two adfacent blocks have as comnon boundaries a numer of great faults, a. 1 of thege faults must lie on "circles of latitude" about the pole of relative rotation. The velocity of one blocic relative to the other must vary alony theiry comvion boundary, being a "uximum at the "equator" and vanishing at the poies of relative rotionon.

The motion of Africa 2elative to South Ammerica is . cas : or whioh enowg data is available to critically tagt this jporisis. The many offisecs on the Mid-Atlantic R. a appar to be comprivile with a pole of relative rotation at 65%, 35° \% ($\pm 5^{\circ}$). The velecity pottem preaicted by this cho: ef of fole roughly ac eas With the spreading velocities determined from manetic anomalies.

We assume that crustal blocks of continental dimersions are rıgia. If the distances between Guadalupe I., Wake I., and Tahiti were measured to the nearest centimeter and then measured-again several years later, we suppose these distances would not change. The distance from Wake I. to pokyo would shorten because there is a trench between these two points, and the distance from Guacaiupe I. to Mexico City would increase because a rise is between them. But within the Pacific Block, we assume there is no stretching, injection of large dikes, thickening, or any other distortion that would change distances between points.

If this hypothesis is true, the conclusions which rollow will be in accord with observations. If this hypothesis is only partially valid, perhaps we will Se able to assess the extent of such distortion by comparing obsexvations with this mode:.

We begin by considering blocks sliding on a plane. We mjwore the possinility of rotions and consider translations oniy. F N. Mu 1. shows two rigid blocks separated by a rise and faults. From the rise alone, we cannot tell the direction of motion of one block relative to the other, the motion does not have to be perpendicular to the axis of the ridge. (There appears to be a tendency for the ridge to adjust itself to be almost perpendicular to the airection of spreading, but this is a dynamical consideration and not a requirament of gematry.) aut from the direction of a transform fault, we can decide upon the direction of relative motion of :","," two blocks. Now we could use the spacing of the magnetic anomalisis paralle: to the ridge crest to determine the velocity and direction of relative motion. The fault. show at the bottom of the figme

Figure 1.
The motion of the left hand block relative to the right hand blook cannot be determined from the strike of the riçie, but can be from the gtrifice of tive trenptersit falts: The fault at therbatem is inconalimant with the othar two and moyld net exist.

Pigure 2. Three crustal blocks bounded by a rise, trench, and faults at three shiccesive time intervals. Note the notion of the circular. seamounts". The of the two sides; the crest of the ridge dxifts with a velocity that is the average of the velorities of the two gides.

Figure 3." An exmale analogous to the preceeding scharbatic diagram. Contidim korth Mmariak to be sentionary, the
 and the small weak in the dower right band acirut to be mevian narthenct moward the Midie Amexion memeth. IVine, 1966.
is incompatible with those above and would not occur.
Figure 2. shovs three blocks bounded by a rise and fanlts apd a trench at three successive time intervals. We gee that the strike of a fault depends on the difference between the velocitiss of the two sides, and that the axis of the rise has a "drift" velocity equal to the average of the velocities of the two sides. An example of this geometry in nature is shown in Pigure 3. The Whye blocks we Natth America (considered stationary), the Pacific Block (moving northwest toward the Aleutian and Japan Trench), and a small block bounded by the Middle America Trench and the East Pacific Rise between the Gulf of California and the Tehuantepec Riage (moving northeast into the trench).

We now go to a mphere. A theorem of geematry proves that a blook on a aphere can be moved to any other conceivable orientation by a single rotation about an appropriate pole. We may use this to prove that the relative motion of two rigid blocks on a phere may be described by an angular velocity vector. We need three parameters, two to speaify the location of the pole and one for the megnituain of the angular velocity. Look at Figure 4. and consider the left block to be stationary and the right block to be moving as shown. Faults of great displacement can occux only where there is no oomportent of velocity perpendicular to their strike; the difference in velocity of the two sides must be parallel to the fault's atrike. (Considar the great depths of the Guif of Aqaba and the Dead sea as contrasted to the short mountain renge in Lebanon. The axas of these features depact from a smooth emall circle representing the motion of Arabia relative to the AfricaMediteranean Block in a manner which qualitatively explains these
featuren. Can the ridges or troughe of great fanits genaxiliy bo compalatad with docal atrike this way? Wo thus soe that all the Ganlas common to these two blocks must lie on mall circles cementrice with the pola of relative rotation.

Pigure 5 heve the offeets of the ridge in the equatorial Atiantic. Seta of concentric circles about various polea were
 ares Eface for the pole at $65^{\circ} \mathrm{N}, 35^{\circ} \mathrm{W}$ is shown, but pole positions at $60^{\circ} \mathrm{N}, 30^{\circ} \mathrm{W}$ and $70^{\circ} \mathrm{N}, 65^{\circ} \mathrm{W}$ give almost equally good fitm. Thera in tair contrel of the longltude of the bast fitting pole but inswar uncestrainty in the latitude of the bert pole. That is, we can draw linea parpandicuiar to the faults and they intersect up north at grathat ungles giving good control in one direction but poor control In the other. Figure 6 shows the bathymetry of the Ahianti: Fracture zone at $32^{\circ} \%$ and a mall circle drawn about the pole at $65^{\circ} \mathrm{M}, 35^{\circ} \mathrm{W}$. There is no line of earthquakes or other dindention of tectonic activity entirely separating North and south Amprica, and we ghall asowe that North Amarica and South Amarica
 entirely meparates the Americas, and perhapa thare is alow movement Whth quadal diacemetion in tho Atlantic area. But if there is zeilentre medriciat wo may aname it ia very slow at this "hinge" or "prop" betwen the Iemser Antilles and the Mid-melantic Ridge.

Figure 5. The strike of the transform faults in the equatorial Atlantic compared to circles concentric about a pole at $65^{\circ} \mathrm{N}, 35^{\circ} \mathrm{W}$. (The present motion of Africa relative to South America) [Adapted from Heezen and Tharp, 1965]

Figure 6. Bathymetric sketch of Atlantis Fracture Zone. Contour interval 400 fm . Dark area 1200 to 1600 fm . Stippled zones are depths greater than 2400 fm . All available sounding lines are indicated by dashed lines. [Heezen and Tharp, 1965]

> Figure 7. The strike of the faults in the faults in the equatorial Atlantic compared to circles concentric about a pole at $44.0^{\circ} \mathrm{N}, 30.6^{\circ} \mathrm{N}$, the pole about which Africa must be rotated to make its coastline coincide with South America's. (Average motion gince dxifting began) [Adapted from Heezen and Tharp, 19651

Chinook
Mendocino 38
Hurray 28
Molokal $2 a$
Clarion 12
clipperton 2
Galapagos -7
Marquesas -15

Figure 8. Old fracture zones in the Pacific. Pole at $79^{\circ} \mathrm{N}, 111^{\circ} \mathrm{E}$. [Adapted from Menard, 1967]

Abstract

We may contrast this present motion of Africa - Soutl America with the average motion of these two continents since they first split apart. Figure 7 shows concentric circles drawn about a pole it $44.0^{\circ} \mathrm{N}, 30.6^{\circ} \mathrm{W}$; the pole about which Africa must be rotated to naks $1 t s$ coastline coincide with the coastline of South Anerica [Bullard, Everett, and Smith, 1965]. This average motion is quite different from the present motion, the initial drifting must rave been more north-south until the present more or less east-west motion commenced maybe 50 million years ago. Figure 8 shows the old fracture zones in the Pacific \lfloor Menard, 1967 , and a set of circles concentric about $79^{\circ} \mathrm{N}, 111^{\circ} \mathrm{E}$. The Mendocino and Pioneer racture zones depart from the circles much sooner than do the other fracture zones, this $1 s$ likely related to North America "overriding" and interfering with the flow of the rise.at an early date. These old fracture zones indicate that the Pacific once moved toward trenches off New Guinea and the Phillipines. About 13 million years ago this pattern changed and the pacific now moves toward the Japan and Aleutian trenches.

If we assume that Africa and the Americas are opening up ahout a pole at $65^{\circ} \mathrm{N} .35^{\circ} \mathrm{W}$, then we may predirt the velocity of spreading at each point along their common boundary (the Azores to Bouvet Island) If we know the latituae and longitude of a point on the erest of the ridge and the strike of the ridge at this point, we calculate the velocity of apreading perpendicular to the strike of the ridge according to:

$V_{1}=V_{\text {max }}$ ain $\theta \cdot \cos \left(s \operatorname{cosme}^{-\alpha)}\right.$

In order to be able to project a pattern of magnetic anomalias from a ship"g track to a line parallel to the direction of apreading, We need to know the otrike of the magnetic anomaly pattern. This relation is shown in Figure 9. It if convenient to let the "half-velocity perpendicular to the etxike of the ridge" be the form in which the observations are placed. "Half-velocity" since this is the form in which spreading rates are comonly quoted. rhere appata to be some self-adjusting maninisu in the rifting procese which gives rise to a symetric magnetic anomaly pattern, but there is no geometrical requirement that opreading rates be equal on both sides. We define half-velocity to be the distance Erom a recogniaable feature of a magnetic pattern to the correaponding fature on the other pide of the ridge dividea by two (and divided by the appropriate time). We chooee "perpendioulax to the strike of the ridge" since this mans an obeerved rate need be determined only once, and thif value then compared to a choice of calculated models.

rigure 10 shows several observed spreading rates in the Atlantic compared to the model. Since the ridge runs almost monotonically north-south with only a minimum of doublinq back at the equator, iatitude is a convenient coordinate against which to plot the rates. Knowledge of the latitude, longitude, and strike of the ridge were needed at each point; these values were taken from Figure 2 of Talwani, Heezen, and Worzel (1961) for the northern part, from Figure 7 shown here lHeezen and Tharp, 1965] for the equatorial region, and Figure 3 of Heirtzler and Le Pichon [1965] for the southern region. The solid line in Figure 10 was calculated using these values and with the choice of PLONG $=65 .{ }^{\circ} \mathrm{N}, \operatorname{PLAT}=35 .{ }^{\circ} \mathrm{W}, \operatorname{VMAX}=2.8 \mathrm{~cm} / \mathrm{Y}$. The dashed line ignores the strike correction; it gives not the half-velocity perpendicular to the strike of the ridge but rather the halfvelocity parallel to the direction of spreading.

The observed values were obtained in the following manner. The two points marked "Phillips" were obtained by J. D. Phillips (private communication, to be presented at the washington meting, A.G.U., 1967). The magnetic profiles used here may be found in Heirtzler and Le Pichon [1965], Talwani, Heezen, and Worzel [1961], and Vacquier and Von Herzen [1964]. The strike of the ridge at the crossings of Vema $4,1 /$, and 10 was assumed to be $38^{\circ}, 38^{\circ}$, and 30° respectively. Zero strike was assumed at the crossings of Argo, zapiola, and Vema 12. No error is introduced by this assumption if the ship was heading due east or weat; the error is larger the more the ship's course departs from this ideal. In the case of Vema 12 , if the $s t r i k e$ of the ridge were -30° instead of the assumed 0°, the spreading rate would be 20% less than the $1.8 \mathrm{~cm} / \mathrm{yr}$ shown here.

Abstract

Expected magnetic anomalies were calculated at locations near each crossing of the ridge using the normal-reversed time scale (and program) of F. J. Vine [Vine, 1966, fig. 12]. Features on these computed patterns were compared to the observed profiles and the relation between time and distance from the crest of the ridge stablished.

More magnetic profiles should be analyzed to critically test this hypothesis. Of particular interest in the Atlantic is the region between the Azores and about $20^{\circ} \mathrm{N}$ where the predicted value of spreading rate changes markedly.

Raferences

Sullard, E. C., J. E. Everett, and A. G. Smith, The fit of the continents around the Atlantic, Phil. Trans. Roy. Soc. Iondon Sex. A 258, 41-51, 1965.

Heezen, B. C., and Marie Tharp, Tectonic fabric of the Atlantic and Indian oceans and continental drift, Phil. Trans. Roy. Soc: London Sex. A. 258, 90-106, 1965.

Heirtzler, J. and X. Le Pichon, Crustal structure of the midocean ridges, 3, Magnetic anomaiies over the mid-Atlantic ridge, J. Geophys. Res., 70, 4013-4033, 1965.

Menard, \dot{H}. W., Extension of northeastern-Pacific fracture zones, Sciance, 155, 72-74, 1967

Talmani, M., B. C. Heezen, and J. L. Worzel, Gravity anomalies, physiography and crustal structure of the mid-Atlantic Ridge, Publ. Bur. Central Seismol. Intern., Ser A, Trav. Sci., Fasc. 22, 81-111, 1961.

Vacquier, V., and R. P. Von Herzen, Evidence for connection between heat flow and the mid-Atlantic ridge magnetic anomaly, I. Geophys. Res., 69, 1093-1101, 1964.

Vine, F. J., Spreading of the ocean floor: new evidence, Science, 154, 1405-1415, 1966.

